To determine the off-count percentage, we need to find the proportion of samples that fall outside the tolerance limits.
First, let’s find the z-scores corresponding to the lower and upper tolerance limits:
For the lower limit (19.7 Ne):
ZLower = (19.7 – 20.46)/0.5 [As Z = (X-μ)/σ ]
= -1.52
For the upper limit (21.22 Ne):
ZUpper = (21.22 – 20.46)/0.5
= 1.52
Now, we will use the cumulative distribution function (CDF) of the standard normal distribution to find the proportion of samples outside these z-scores.
The cumulative distribution function gives the area under the normal curve to the left of a given z-score.
For the lower limit:
P (below -1.52) = P (Z < -1.52)
For the upper limit:
P (above 1.52) = 1 – P (Z < 1.52)
Using a standard normal distribution table or calculator, we can find these probabilities:
- P (Z < -1.52) ≈ 0.063
- P (Z < 1.52) ≈ 0.935
Now, we can find the off-count percentage:
Off-count percentage = (0.063 + (1 – 0.935)* 100%)
Off-count percentage = (0.063 + 0.065) *100 %
Off-count percentage = 0.128 * 100%
Off-count percentage = 12.8 %
So, the off-count percentage is approximately 12.8%.
Прыжки с парашютом: доступно, безопасно, незабываемо
Прыжки с парашютом в СПб https://pryzhki-s-parashyutom-v-spb.ru/ .